QUIZ 13

This quiz covers section 4.3, 4.4, 4.5.
Exercise 1: Use properties of logarithms to condense the logarithmic expression:
$\frac{1}{3}\left(\log _{4} x-\log _{4} y\right)$

Exercise 2: The loudness level of a sound can be expressed by comparing the sound's intensity to the intensity of a sound barely audible to the human ear. The formula
$D=10\left(\log I-\log I_{0}\right)$ describes the loudness level of a sound, D , in decibels, where I_{0} is the intensity of the sound, in watts per square meter, and I_{0} is the intensity of a sound barely audible to the human ear.
a) Express the formula so that the expression in parentheses is written as a single logarithm.
b) Use the form of formula from part (a) to answer this question: If a sound has an intensity 100 times the intensity of a softer sound, how much larger on the decibel scale is the loudness level of the more intense sound?
($1+2$ points)

Exercise 3: Solve each logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer.
a) $\ln \sqrt{x+3}=2$
b) $\log _{2}(x+2)-\log _{2}(x-1)=3$
(1+2 points)

Exercise 4: Use the exponential growth model, $A=A_{0} \mathrm{e}^{\mathrm{kt}}$, to show that the time it takes a population to triple (to grow from A_{0} to $3 A_{0}$) is given by $t=\frac{\ln 3}{k}$.

