Name:

QUIZ 13

This quiz covers section 4.3, 4.4, 4.5.

Exercise 1: Use properties of logarithms to condense the logarithmic expression:

 $\frac{1}{3}(\log_4 x - \log_4 y)$

(2 points)

Exercise 2: The loudness level of a sound can be expressed by comparing the sound's intensity to the intensity of a sound barely audible to the human ear. The formula

 $D = 10(\log I - \log I_0)$ describes the loudness level of a sound, D, in decibels, where I_0 is the intensity of the sound, in watts per square meter, and I_0 is the intensity of a sound barely audible to the human ear.

a) Express the formula so that the expression in parentheses is written as a single logarithm.

b) Use the form of formula from part (a) to answer this question: If a sound has an intensity 100 times the intensity of a softer sound, how much larger on the decibel scale is the loudness level of the more intense sound? (1+2 points)

Exercise 3: Solve each logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer.

a)
$$\ln \sqrt{x+3} = 2$$

b) $\log_2(x+2) - \log_2(x-1) = 3$ (1+2 points)

Exercise 4: Use the exponential growth model, $A = A_0 e^{kt}$, to show that the time it takes a population to triple (to grow from A_0 to $3A_0$) is given by $t = \frac{\ln 3}{k}$. (2 points)